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Abstract— We present a novel entropy coding technique which is based on recursive interleav-
ing of variable-to-variable length binary source codes. The encoding is adaptable in that each bit
to be encoded may have an associated probability estimate which depends on previously encoded
bits. The technique can achieve arbitrarily small redundancy. The technique may have advantages
over arithmetic coding, including most notably a simple and fast decoder.

1 Outline of The Entropy Coding Technique

1.1 Introduction

In data compression algorithms the need frequently arises to compress a binary sequence in which
each bit has some estimated distribution, i.e., probability of being equal to zero. In many practical
situations it is desirable to have the estimated distribution for a bit depend on the values of
earlier bits. Accommodating such a dynamically changing probability estimate is tricky because
the decoder must make the same estimate as the encoder. Thus, before the ith bit can be decoded,
the value of the first ¢+ — 1 bits must be determined.

To our knowledge, currently the only efficient encoding methods in this case are arithmetic
coding and the relatively unknown technique called interleaving entropy coders [1], which is a
generalization of the “block Melcode” [2]. In this paper, we describe a new entropy coding technique
which can efficiently encode a binary source with a bit-wise adaptive probability estimate. This

technique can be seen as a generalization of the interleaving entropy coders method [1].

1.2 The Source Coding Problem

We examine the problem of compressing a sequence of bits b1, be,... from a random source. The
source probability estimates p; = Prob[b; = 0] may depend on the values of the source sequence
prior to index i. In general, this dependence encompasses both adaptive probability estimation as
well as correlations or memory in the source. Consequently, efficient encoding requires a bit-wise
adaptable encoder.

We make the following assumptions:
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1. Without loss of generality, we assume that p; > 1/2 for each index 4. If this were not the

case, we could simply invert bit b; before encoding to make it so.

2. We also assume that the decoder can determine when decoding is complete. In practice, this
often occurs automatically, or straightforward methods can be used, such as transmitting the

sequence length prior to the compressed sequence.

1.3 The Recursive Interleaved Entropy Coder Concept

Since, by assumption, each bit has probability of zero at least 1/2, we are concerned with the
probability region [1/2,1]. We partition this region into several narrow intervals, and with each
interval we associate a bin that will be used to store bits. When bit b; arrives, we place it into the
bin corresponding to the interval containing p;. Because each interval spans a small probability
range, all of the bits in a given bin have nearly the same probability of being zero, and we can
think of each bin as corresponding to some nominal probability value.

For each bin (except the leftmost bin, which contains probability 1/2) we specify an exhaustive
prefix-free set of binary codewords. When the bits collected in a bin form one of these codewords,
we delete these bits from the bin and encode the value of the codeword by placing one or more new
bits in other bins?. This process is conveniently described using a binary tree. Each codeword is
assigned to a terminal node in the tree, internal nodes are labeled with a destination bin, and the
branch labels (each a zero or one) correspond to the output bits that are placed in the destination
bins.

For example, Figure 1 shows a tree that might be used for a bin with nom-
inal probability 0.9. The prefix-free codeword set for this bin is {00,01, 1},

shown as labels of the terminal nodes in the tree. If the codeword to be pro-

cessed in the bin is 00, which occurs with probability approximately 0.81,
Figure 1: Exam- We place a zero in the bin that contains probability 0.81. If the codeword

ple of a tree for a 51 first we place a one in the bin containing probability 0.81, which indi-
bin with representa-

tive probability 0.9. cates that the codeword is something other than 00, then we place a zero
in the bin containing probability 0.53 because, given that the codeword is not 00, the conditional
probability that the codeword is 1 is approximately 0.53.

For the first bin we do not define a tree such as the one in Figure 1. Instead, bits in this bin

form the encoder’s output. Bits that reach the first bin have probability of being zero very close

2The ordering of the new bits in a bin is not straightforward and we save these details for Section 2.2.



to 1/2 and are thus nearly incompressible, so transmitting these bits uncoded does not add much
redundancy.

Bits arrive in various bins either directly from the source or as a result of processing codewords
in other bins. Our goal is to have new bits migrate to the leftmost (uncoded) bin, where they
are transmitted. To accomplish this, we require trees to be designed so that all new bits resulting
from the processing of each codeword are placed in bins strictly to the left of the bin in which the
codeword was formed. Apart from our desire to move bits to the left, this requirement also prevents
encoded information from traveling in “loops”, which would make coding difficult or impossible.
Thus if a bin has nominal probability p, we would like the probability of a zero for each output bit

to be in the range [1/2,p). Perhaps surprisingly, this turns out to be a reasonable requirement:

Theorem 1 For any given probability value p € (1/2,1), there exists a tree with the property that
all output bits have probability of zero in the range [1/2,p). Such a tree is said to be useful at p.

This is proven by exhibiting an infinite family of trees for which at least one tree is useful at any
p € (1/2,1). Figure 2 illustrates a tree from this family. We omit the details of the proof.
When we reach the end of the bit sequence to be e

encoded and no codewords remain in any bin, there o1

will generally be partially formed codewords in one or o024
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more bins. Since these bits are needed for decoding, we 01
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In practice, the encoder and decoder do not keep
track of probability values. Instead, each bin is assigned Figure 2: A useful tree.
an index, starting with index 1 corresponding to the leftmost (uncoded) bin. At each node in the
tree we identify the index (rather than the nominal probability value) of the bin to which the next
output bit is mapped. The requirement we impose is that each output bit from the tree for bin j
must be mapped to a bin with index strictly less than j. No computations involving probability
values are needed except that at the input it will be necessary to map each bit b; to the appropriate
bin index®.

We can see intuitively that some redundancy is present in this system because the bins have

positive width — the probability associated with a bit that arrives in a bin will usually not exactly

% In fact, we don’t necessarily need to know (or estimate) p; if we have another good method for assigning the
appropriate bin index to each input bit.



equal the bin’s nominal probability, and bits in the leftmost bin are transmitted uncompressed
even though they may not have probability of zero exactly equal to 1/2. As one might expect,
however, by increasing the number of bins and/or the size of the trees, we can trade complexity for
performance and decrease the maximum redundancy to arbitrarily small values.

An important special case of the entropy coder arises when all output bits generated from each
tree in the encoder are mapped to the uncoded bin. In this case the encoder amounts to interleaving

several separate variable-to-variable length binary codes, as in [1, 2].

2 Encoding and Decoding

2.1 Decoder Operation

We first describe decoding since it determines the encoding procedure. It is convenient to think of
each bin in the decoder as containing a list of bits. To decode, we initially place all of the encoded
bits in the first (uncoded) bin, and all other bins are empty. At any time, each nonempty bin (with
the exception of the uncoded bin) will contain a single codeword or a prefix of a codeword.

Software decoding uses two recursive procedures, GetBit and -GetCodeword. GetBit sim-
ply takes the next available bit from the indicated bin. If the bin is empty then it first calls
GetCodeword. Given an empty bin, GetCodeword determines which codeword must have occupied
the bin by taking bits from other bins (via GetBit), then places that codeword in the bin. The
GetCodeword procedure is similar to Huffman decoding, except that at each step we take the next
bit from the appropriate bin, not (necessarily) from the encoded bit stream.

To decode the ith bit, let binindex equal the index of the bin to which the ith bit would have
been assigned. This assignment may be a function of all of the previously decoded bits. Then the

1th decoded bit is equal to GetBit (binindex).

2.2 Encoder Operation

To ensure that decoding is possible, we must pay careful attention to the order in which bits are
processed by the encoder. The bin to which bit b; is mapped may depend on the values of previous
bits, and therefore information needed to encode bit b;_, has priority over (i.e., should be processed
before) information needed to encode bit b;.

One encoding method that produces encoded bits in the appropriate order is to maintain a

linked list of bit values sorted in order of priority. Each record in the list stores the bit value and



the index of the bin that contains the bit. We can start by placing the entire input sequence in
the list. To encode, at each step we start with the highest indexed nonempty bin. We take bits
from this bin (in priority order) until we have formed a codeword, appending flush bits if needed.
We delete the bits that formed the codeword and insert the resulting output bits in the list at the
location of the highest priority bit in the codeword.

To manage long input sequences with limited memory, we can partition the input sequence into
blocks of known size and encode each block separately. An alternative technique is not described

here due to space limitations.

3 Code Design

In this section we’ll illustrate a procedure to design an encoder. To apply this procedure we begin
with a redundancy target A which is the maximum allowed redundancy* (in bits) and a set of
candidate trees to be used in the encoder. In this context each tree does not include assignments
of bin indices to internal nodes or output bit labels to branches. These assignments will be made
as part of the design procedure. With a suitable set of candidate trees, we can produce an encoder
that has redundancy less than A for arbitrarily small A.

We select the tree for each bin in or-

>

der of increasing bin index. When bins
1,2,...,7—1 have been completed, design-

ing the 7th bin amounts to selecting a tree

redundancy

for the bin, assigning bin indices to inter-

nal nodes and output bit labels to branches,

z Z
and calculating z;_1, the probability value ' 2 P

where we switch from bin j — 1 to bin j. Figure 3: Redundancy of an encoder after designing

) ) the first three bins.
(Of course no design work is required for

the first bin since it is uncoded and 2y = 1/2.) For example, Figure 3 shows a case where the
encoder has been designed for the first three bins, and our redundancy target A is met when p is
less than some critical value p*. Thus we know that z3 < p*, and we need to specify the tree to use
for the fourth bin of the encoder.

To do this, we can take from our set of candidate trees any tree that is useful at p* and assign

branch and internal node labels based on this probability value. That is, we calculate the branch

*We assume here that the maximum redundancy will occur at the boundary between two bins.
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probability for each internal node in the tree and label the branches so that a zero output is more
likely than a one at each node. Then, at each internal node, if a zero output bit occurs with
probability ¢, we map this bit to the bin with index j such that q € [z;_1, z;).

This construction maps output bits to bins in regions where the redundancy is less than the
target A, and it can be shown that the redundancy at probability p* is strictly less than A. Since
the rate functions for each bin are continuous, we have extended the range where the encoder meets

the redundancy bound.

We can also try assigning branch labels, and 0.16
even selecting a tree, based on some probability - ;’1
P ; i
. . 0.12- / \ 2bins |
target value larger than p*. This alternative / /

generally produces larger redundancy at p*, but

frequently meets the redundancy target A at p*
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and may extend further the range over which

bin j is used, which can help to reduce the total
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number of bins used in the encoder.

We have found some good encoder designs
Figure 4: Redundancy of some encoders using a

using this technique. Figure 4 shows the re- small number of bins.

dundancy of some of these designs, computed

using a recursive rate estimation technique we developed.

4 Conclusion

The techniques described here have been used to produce working software encoders and decoders
that confirm the performance estimates shown. Low redundancy is attainable using relatively small
trees (e.g., an average of 6 terminal nodes in the trees used for the encoders of Figure 4). This

technique may be a viable alternative to arithmetic coding when decoding speed is important.
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